Answers 4.2

a) Calculate the velocity of a toluene molecular ion, $m / z 92$, after acceleration by a voltage of 5 kV .

The mass of the ion is approximately $92 \times 1.66 \times 10^{-27} \mathrm{~kg}=1.53 \times 10^{-25} \mathrm{~kg}$ and the velocity is given by (Chap. 4.2):

$$
v=\sqrt{\frac{2 e z U}{m_{i}}}
$$

Thus we have

$$
v=\sqrt{\frac{2 \cdot 1.602 \times 10^{-19} \mathrm{C} \times 5000 \mathrm{~V}}{1.53 \times 10^{-25} \mathrm{~kg}}}=1.02 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
$$

b) How long will it take this ion to travel a distance of 1.0 m through a small magnetic sector mass analyzer to hit the detector?

The relationship between velocity and time t needed to travel the distance s is

$$
t=\frac{s}{v}
$$

which upon substitution of v becomes

$$
t=\frac{s}{\sqrt{\frac{2 e z U}{m_{i}}}}
$$

As we have already calculated v, t is now easily obtained:

$$
t=\frac{1.0 \mathrm{~m}}{1.02 \times 10^{5} \mathrm{~ms}^{-1}}=9.8 \times 10^{-6} \mathrm{~s}
$$

i.e., it takes approximately $10 \mu \mathrm{~s}$.

